86 research outputs found

    Decidability of definability issues in the theory of real addition

    Full text link
    Given a subset of X⊆RnX\subseteq \mathbb{R}^{n} we can associate with every point x∈Rnx\in \mathbb{R}^{n} a vector space VV of maximal dimension with the property that for some ball centered at xx, the subset XX coincides inside the ball with a union of lines parallel with VV. A point is singular if VV has dimension 00. In an earlier paper we proved that a (R,+,<,Z)(\mathbb{R}, +,< ,\mathbb{Z})-definable relation XX is actually definable in (R,+,<,1)(\mathbb{R}, +,< ,1) if and only if the number of singular points is finite and every rational section of XX is (R,+,<,1)(\mathbb{R}, +,< ,1)-definable, where a rational section is a set obtained from XX by fixing some component to a rational value. Here we show that we can dispense with the hypothesis of XX being (R,+,<,Z)(\mathbb{R}, +,< ,\mathbb{Z})-definable by assuming that the components of the singular points are rational numbers. This provides a topological characterization of first-order definability in the structure (R,+,<,1)(\mathbb{R}, +,< ,1). It also allows us to deliver a self-definable criterion (in Muchnik's terminology) of (R,+,<,1)(\mathbb{R}, +,< ,1)- and (R,+,<,Z)(\mathbb{R}, +,< ,\mathbb{Z})-definability for a wide class of relations, which turns into an effective criterion provided that the corresponding theory is decidable. In particular these results apply to the class of k−k-recognizable relations on reals, and allow us to prove that it is decidable whether a k−k-recognizable relation (of any arity) is l−l-recognizable for every base l≥2l \geq 2.Comment: added sections 5 and 6, typos corrected. arXiv admin note: text overlap with arXiv:2002.0428

    Contextual partial commutations

    Get PDF
    We consider the monoid T with the presentation which is "close" to trace monoids. We prove two different types of results. First, we give a combinatorial description of the lexicographically minimum and maximum representatives of their congruence classes in the free monoid {a; b}* and solve the classical equations, such as commutation and conjugacy in T. Then we study the closure properties of the two subfamilies of the rational subsets of T whose lexicographically minimum and maximum cross-sections respectively, are rational in {a; b}*. © 2010 Discrete Mathematics and Theoretical Computer Science

    Contextual partial commutations

    Get PDF
    We consider the monoid T with the presentation which is "close" to trace monoids. We prove two different types of results. First, we give a combinatorial description of the lexicographically minimum and maximum representatives of their congruence classes in the free monoid {a; b}* and solve the classical equations, such as commutation and conjugacy in T. Then we study the closure properties of the two subfamilies of the rational subsets of T whose lexicographically minimum and maximum cross-sections respectively, are rational in {a; b}*. © 2010 Discrete Mathematics and Theoretical Computer Science

    On the Maximum Coefficients of Rational Formal Series in Commuting Variables

    Get PDF
    Abstract. We study the maximum function of any R+-rational formal series S in two commuting variables, which assigns to every integer n ∈ N, the maximum coefficient of the monomials of degree n. We show that if S is a power of any primitive rational formal series, then its maximum function is of the order Θ(n k/2 λ n ) for some integer k ≥ −1 and some positive real λ. Our analysis is related to the study of limit distributions in pattern statistics. In particular, we prove a general criterion for establishing Gaussian local limit laws for sequences of discrete positive random variables
    • …
    corecore